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An Explicit Finite-Volume
Algorithm with Multigrid



Key Characteristics

cell-centered data storage; the numerical solution for the state
variables is associated with the cells of the grid

second-order finite-volume spatial discretization with added
numerical dissipation; a simple shock-capturing device

applicable to structured grids

explicit multi-stage time marching with implicit residual smoothing
and multigrid



Spatial Discretization:
Cell-Centered Finite-Volume
Method



Spatial Discretization: Cell-Centered Finite-Volume Method

Cell centered data storage



Spatial Discretization: Cell-Centered Finite-Volume Method

Integral form of conservation law:
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Spatial Discretization: Cell-Centered Finite-Volume Method

Semi-discrete form:
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Cell average:
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Inviscid and Viscous Fluxes

Inviscid operator (second order):
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Inviscid and Viscous Fluxes

Viscous operator (second order)

Viscous flux tensor contains velocity derivatives
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Inviscid and Viscous Fluxes

Auxiliary cell A’'B’C'D’ for computing viscous fluxes



Iteration to Steady State



Mechanism for converging to steady state

= The "error” is removed by 1) convecting out through the far-field
boundary and 2) through dissipation



Multi-Stage Time-Marching
Method



Multi-Stage Time-Marching Method
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Multi-stage method with ¢ stages:
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Multi-Stage Time-Marching Method

A — o relation for 5-stage method:
du
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Multi-Stage Time-Marching Method
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Contours of |o| for the five-stage time-marching method with 85 = 1/6,
B4 =1/24, and 5 = 1/120. Contours shown have |o| equal to 1, 0.8, 0.6, 0.4,
and 0.2.
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Multi-Stage Time-Marching Method
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2nd-order centered differences with 3rd-order artificial dissipation (a > 0)
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Eigenvalues:
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Multi-Stage Time-Marching Method
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Plot of Ah values given for M = 40, k4 = 1/32, and C\, = 2.5 with contours of
|o| for the five-stage time-marching method with oy = 1/5, o = 1/4, and
as = 1/3. Contours shown have |o| equal to 1, 0.8, 0.6, 0.4, and 0.2.
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Multi-Stage Time-Marching Method

0 0.5 1 1.5 2 25 3
Plot of |o| values vs. kAx for the spatial operator with C,, = 2.5, k4 = 1/32,

and the five-stage time-marching method with a; = 1/5, ao = 1/4, and
a3 = 1/3.
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Multi-Stage Time-Marching Method

Change the «, values (and the Courant number):

imag(h h)
IS
o

-4 -3 -2 =]
real( h)

Plot of Ah values for M = 40, k4 = 1/32, and C, = 3 with contours of |o| for
the five-stage time-marching method with a1 = 1/4, aa = 1/6, and a3 = 3/8.
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Multi-Stage Time-Marching Method

Plot of |o]| values vs. KAz for the spatial operator with C\, = 3, k4 = 1/32,
and the five-stage time-marching method with oy = 1/4, as = 1/6, and
asg = 3/8 (solid line). The dashed line shows the results with C\, = 2.5 and
oy =1/5, az =1/4, and oz = 1/3.
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Multi-Stage Time-Marching Method

Consider computing the artificial dissipation only on stages 1, 3, and 5:
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50 = (1 =T3)(1 =T5), 751 =0, 52 =03(1-T5), 753 =0, 754 =15

Compute viscous terms on stage 1 only:
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Multi-Stage Time-Marching Method
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Plot of Ah values for M = 40, k4 = 1/32, and C,, = 3 with contours of |o]| for

the five-stage time-marching method with vy = 1/4, ax = 1/6, and a3 = 3/8
with the artificial dissipation computed only on stages 1, 3, and 5.
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Multi-Stage Time-Marching Method

© o

Plot of |o| values vs. KAz for the spatial operator with C\, = 3, ka4 = 1/32,
and the five-stage time-marching method with a1 = 1/4, a2 = 1/6, and

as = 3/8 with the artificial dissipation computed only on stages 1, 3, and 5
(solid line). The dashed line shows the results with the artificial dissipation
computed at every stage, and the dash-dot line shows the results with
Ch=25and a1 =1/5, as =1/4, and a3 = 1/3.
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Multi-Stage Time-Marching Method

Local Time Stepping

For example, for inviscid flow:

(Az);

7Cn
(lul + a);

(At); =

Local time stepping is essential for fast convergence of an explicit scheme

For an explicit scheme, must be done more carefully than for an implicit
scheme

Does not address the problem of cells with high aspect ratios
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Multi-Stage Time-Marching Method
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Multi-Stage Time-Marching Method
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Multi-Stage Time-Marching Method
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Plot of Ah values for M = 40, k4 = 1/32 with contours of |o| for the five-stage
time-marching method with a1 = 1/4, a2 = 1/6, and oz = 3/8. Time step
based on minimum of A, and hg.
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Multi-Stage Time-Marching Method
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Plot of Ah values for M = 40, k4 = 1/32 with contours of |o| for the five-stage
time-marching method with a1 = 1/4, ae = 1/6, and a3 = 3/8.

Time step based on
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The Multigrid Method




The Multigrid Method

Coarse mesh construction for a cell-centered scheme

Recursive approach — so we will discuss a two-grid problem first
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The Multigrid Method

ODE system on fine mesh

d

1
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Ajk

Restrict residual to coarse mesh
20, 1 o
IR = 4~ ; AnRy,
Restrict solution to coarse mesh
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The Multigrid Method

ODE on coarse mesh

%th = —[Ron(Q2n) + Pan)
Source term
Pay = IZ" Ry, — Ron(QF))
Drives the following to zero:

Ron(Q2n) + Pon, = Ron(Qan) — Ran( 5‘23) + "Ry,
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The Multigrid Method

At first stage

~[Ron(Q%)) + Pon] = —[Ran(Q)) + IZ" Ry — Ron(Q))] = —I" Ry

At mth stage

m 0 m—1
gh) = gh) — amh[R( gh )) + Pap]

When restricting to the next coarser mesh level, the source term must be
included
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The Multigrid Method

Condition on restriction and prolongation operators:

pr +pp + 2 > ppDE

For example, pr = 0, pp = 1 for Navier-Stokes equations (pppr = 2)

Prolongation operator with pp = 1 (see figure):

1
I AQ = ﬁ(9AQ1 +3AQ2 + 3AQ35 + AQy)
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The Multigrid Method

Bilinear prolongation operator for cell-centered scheme in two dimensions

31



The Multigrid Method

Prolong correction from coarse mesh to fine mesh:

Elcorrected) _ Qh + Igh(Q2h o é%)

)
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The Multigrid Method

VAL
Vo WY

Four-grid V and W multigrid cycles
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The Multigrid Method
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A

Full multigrid with four grids
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